当前位置:首页 > 新闻 > 正文

数学三角函数公式表(三角函数公式有哪些)

新闻 2022-09-21 07:30

同角三角函数的基本关系  倒数关系:tanα ·cotα=1   sinα ·cscα=1   cosα ·secα=1    商的关系:sinα/cosα=tanα=secα/cscα   cosα/sinα=cotα=cscα/secα   平方关系:sin^2(α)+cos^2(α)=1   1+tan^2(α)=sec^2(α)   1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)   证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]   =sin(a+θ)*sin(a-θ)坡度公式 m 形式,如i=1:5.如果把坡面与水平面的夹角记作   a(叫做坡角),那么 i=h/l=tan a.锐角三角函数公式  正弦: sin α=∠α的对边/∠α 的斜边   余弦:cos α=∠α的邻边/∠α的斜边   正切:tan α=∠α的对边/∠α的邻边   余切:cot α=∠α的邻边/∠α的对边二倍角公式  正弦   sin2A=2sinA·cosA   余弦   1.Cos2a=Cos^2(a)-Sin^2(a)   2.Cos2a=1-2Sin^2(a)   3.Cos2a=2Cos^2(a)-1   即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)   正切   tan2A=(2tanA)/(1-tan^2(A))三倍角公式   sin3α=4sinα·sin(π/3+α)sin(π/3-α)   cos3α=4cosα·cos(π/3+α)cos(π/3-α)   tan3a = tan a · tan(π/3+a)· tan(π/3-a)   三倍角公式推导    sin(3a)   =sin(a+2a)   =sin2acosa+cos2asina   =2sina(1-sin²a)+(1-2sin²a)sina   =3sina-4sin^3a   cos3a   =cos(2a+a)   =cos2acosa-sin2asina   =(2cos²a-1)cosa-2(1-cos^a)cosa   =4cos^3a-3cosa   sin3a=3sina-4sin^3a   =4sina(3/4-sin²a)   =4sina[(√3/2)²-sin²a]   =4sina(sin²60°-sin²a)   =4sina(sin60°+sina)(sin60°-sina)   =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]   =4sinasin(60°+a)sin(60°-a)   cos3a=4cos^3a-3cosa   =4cosa(cos²a-3/4)   =4cosa[cos²a-(√3/2)^2]   =4cosa(cos²a-cos²30°)   =4cosa(cosa+cos30°)(cosa-cos30°)   =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}   =-4cosasin(a+30°)sin(a-30°)   =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]   =-4cosacos(60°-a)[-cos(60°+a)]   =4cosacos(60°-a)cos(60°+a)   上述两式相比可得   tan3a=tanatan(60°-a)tan(60°+a)n倍角公式  sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n)。 其中R=2^(n-1)   证明:当sin(na)=0时,sina=sin(π/n)或=sin(2π/n)或=sin(3π/n)或=……或=sin【(n-1)π/n】   这说明sin(na)=0与{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina-   sin【(n-1)π/n】=0是同解方程。   所以sin(na)与{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】成正比。   而(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ),所以   {sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1π/n】   与sina sin(a+π/n)……sin(a+(n-1)π/n)成正比(系数与n有关 ,但与a无关,记为Rn)。   然后考虑sin(2n a)的系数为R2n=R2*(Rn)^2=Rn*(R2)^n.易证R2=2,所以Rn= 2^(n-1)半角公式;tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);   cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.   sin^2(a/2)=(1-cos(a))/2   cos^2(a/2)=(1+cos(a))/2   tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]    sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]   cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]   cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]   tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)   tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)   tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)   cos(α+β)=cosαcosβ-sinαsinβ   cos(α-β)=cosαcosβ+sinαsinβ   sin(α+β)=sinαcosβ+cosαsinβ   sin(α-β)=sinαcosβ -cosαsinβ积化和差  sinαsinβ =-[cos(α+β)-cos(α-β)] /2   cosαcosβ = [cos(α+β)+cos(α-β)]/2   sinαcosβ = [sin(α+β)+sin(α-β)]/2   cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数  sh a = [e^a-e^(-a)]/2   ch a = [e^a+e^(-a)]/2   th a = sin h(a)/cos h(a)   公式一:   设α为任意角,终边相同的角的同一三角函数的值相等:   sin(2kπ+α)= sinα   cos(2kπ+α)= cosα   tan(2kπ+α)= tanα   cot(2kπ+α)= cotα   公式二:   设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:   sin(π+α)= -sinα   cos(π+α)= -cosα   tan(π+α)= tanα   cot(π+α)= cotα   公式三:   任意角α与 -α的三角函数值之间的关系:   sin(-α)= -sinα   cos(-α)= cosα   tan(-α)= -tanα   cot(-α)= -cotα   公式四:   利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:   sin(π-α)= sinα   cos(π-α)= -cosα   tan(π-α)= -tanα   cot(π-α)= -cotα   公式五:   利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:   sin(2π-α)= -sinα   cos(2π-α)= cosα   tan(2π-α)= -tanα   cot(2π-α)= -cotα   公式六:   π/2±α及3π/2±α与α的三角函数值之间的关系:   sin(π/2+α)= cosα   cos(π/2+α)= -sinα   tan(π/2+α)= -cotα   cot(π/2+α)= -tanα   sin(π/2-α)= cosα   cos(π/2-α)= sinα   tan(π/2-α)= cotα   cot(π/2-α)= tanα   sin(3π/2+α)= -cosα   cos(3π/2+α)= sinα   tan(3π/2+α)= -cotα   cot(3π/2+α)= -tanα   sin(3π/2-α)= -cosα   cos(3π/2-α)= -sinα   tan(3π/2-α)= cotα   cot(3π/2-α)= tanα   (以上k∈Z)   A·sin(ωt+θ)+ B·sin(ωt+φ) =   √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }   √表示根号,包括{……}中的内容诱导公式  sin(-α) = -sinα   cos(-α) = cosα   tan (-α)=-tanα   sin(π/2-α) = cosα   cos(π/2-α) = sinα   sin(π/2+α) = cosα   cos(π/2+α) = -sinα   sin(π-α) = sinα   cos(π-α) = -cosα   sin(π+α) = -sinα   cos(π+α) = -cosα   tanA= sinA/cosA   tan(π/2+α)=-cotα   tan(π/2-α)=cotα   tan(π-α)=-tanα   tan(π+α)=tanα   诱导公式记背诀窍:奇变偶不变,符号看象限万能公式  sinα=2tan(α/2)/[1+(tan(α/2))²]   cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]   tanα=2tan(α/2)/[1-(tan(α/2))²]

标签 哪些 / 数学 / 公式 / 三角函数 / 
最新文章
二手机械设备交易市场(二手挖掘机去哪买比较靠谱)
二手机械设备交易市场(二手挖掘机去哪买比较靠谱)

1、国内挖机的二手市场基本上以上海,深圳这两地最全最大。 2、上海那边不太了解,深圳相对知道一点。 3、早年深圳的机确实很不错,原装原机而且型号齐全,可能是深圳靠近香港...[详细]

高一物理必修一练习题及答案(60道物理必修一大题及答案) 华中科技大学经济学院(华中科技大学经济学院的学生大一,大二 河南普通高中服务平台(河南中招服务平台的信息怎么更改) 数学单位换算公式大全(公顷,平方米,平方千米公式) 学术学位和专业学位的区别(专业学位与学术学位有什么区别) 北京大学医学部图书馆(哪所大学图书馆藏书最多) 北京公务员考试职位表(北京市公务员考试需要什么条件) 上海热线首页(上海渠成热线取消了吗) 宁波人力资源社会保障(宁波最低社保基数) 学考成绩查询入口(2021年高中学业水平成绩查询入口)
热门排行