卡西尼卵形线(阿波罗尼斯圆的圆心)
阿波罗尼斯(Apollonius)圆,简称阿氏圆。
在平面上给定相异两点A、B,设P点在同一平面上且满足PA/PB= λ, 当λ>0且λ≠1时,P点的轨迹是个圆,这个圆我们称作阿波罗尼斯圆。这个结论称作阿波罗尼斯轨迹定理。设M、N分别为线段AB按定比λ分割的内分点和外分点,则MN为阿波罗尼斯圆的直径,且MN=[2λ/(λ^2-1)]AB。 证明
我们可以通过公式推导出AN的长度:ANBP ,其中BN=AN+AB,所以ANBP=>AN=AP×AB÷(BP-AP),以NM为直径的圆就是我们所求的轨迹圆。 由阿波罗尼斯圆可得阿波罗尼斯定理,即:
设三角形的三边和三中线分别为a、b、c、ma(a为下标,下同)、mb、mc,则有以下关系: b^2+c^2=a^2/2+2ma^2; c^2+a^2=b^2/2+2mb^2; a^2+b^2=c^2/2+2mc^2。
(此定理用余弦定理和勾股定理可以证明)。 相关知识
1.到两定点的距离之商为定值的点的轨迹是阿波罗尼斯圆。 2.到两定点的距离之和为定值的点的轨迹是椭圆。 3.到两定点的距离之差为定值的点的轨迹是双曲线。 4.到两定点的距离之积为定值的点的轨迹是卡西尼卵形线。
二手机械设备交易市场(二手挖掘机去哪买比较靠谱)
1、国内挖机的二手市场基本上以上海,深圳这两地最全最大。 2、上海那边不太了解,深圳相对知道一点。 3、早年深圳的机确实很不错,原装原机而且型号齐全,可能是深圳靠近香港...[详细]